Сборник задач и упражнений по математическому анализу Б. П. Демидович

У нас вы можете скачать книгу Сборник задач и упражнений по математическому анализу Б. П. Демидович в fb2, txt, PDF, EPUB, doc, rtf, jar, djvu, lrf!

Точки перегиба Раскрытие неопределенностей Формула Тейлора Наибольшее и наименьшее значения функции Построение графиков функций по характерным точкам Задачи на максимум и минимум функций Касание кривых.

Неопределенный интеграл Простейшие неопределенные интегралы Интегрирование рациональных функций Интегрирование некоторых иррациональных функций Интегрирование тригонометрических функций Интегрирование различных трансцендентных функций Разные примеры на интегрирование функций Отдел IV.

Определенный интеграл Определенный интеграл как предел суммы Вычисление определенных интегралов с помощью неопределенных Теоремы о среднем Несобственные интегралы Вычисление площадей Вычисление длин дуг Вычисление объемов Вычисление площадей поверхностей вращения Вычисление моментов. Координаты центра тяжести Задачи из механики и физики Приближенное вычисление определенных интегралов Отдел V.

Признаки сходимости знакопостоянных рядов Признаки сходимости знакопеременных рядов Действия над рядами Функциональные ряды Степенные ряды Ряды Фурье Суммирование рядов Нахождение определенных интегралов с помощью рядов Бесконечные произведения Формула Стирлиига Дифференциальное исчисление функций нескольких переменных Предел функции.

Интегралы, зависящие от параметра Собственные интегралы, зависящие от параметра Несобственные интегралы, зависящие от параметра. Равномерная сходимость интегралов 3. Дифференцирование и интегрирование несобственных интегралов под знаком интеграла 4. Кратные и криволинейные интегралы Двойные интегралы Вычисление площадей Вычисление объемов Вычисление площадей поверхностей Приложения двойных интегралов к механике Тройные интегралы Вычисление объемов с помощью тройных интегралов Приложения тройных интегралов к механике Несобственные двойные и тройные интегралы Многократные интегралы Криволинейные интегралы Формула Грина Физические приложения криволинейных интегралов Поверхностные интегралы Формула Стокса.

Формула Остроградского Элементы теории поля Ответы Представлена программа курса высшей математики: Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Расчетные задания Варианты.

Несобственные интегралы и интегралы, зависящие от параметра. Определенный интеграл f d в главе был введен для случая ко нечного промежутка [, ] и ограниченной функции f. Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Владимирский государственный университет имени.

Колесников Вариационное исчисление Высшая Школа Экономики. Необходимые и достаточные условия второго порядка в простейшей вариационной задаче Необходимые. Сибирский математический журнал Ноябрь декабрь, Том 48, 6 УДК Необходимое и достаточное условие экстремума функции многих переменных Рассмотрим задачу на нахождение условного экстремума для случае функции двух переменных.

Федеральное агентство по образованию И. Чуракова Задачи по квантовой механике Учебное пособие для вузов Часть 3-е издание Воронеж Утверждено научно-методическим советом. Московский физико-технический институт государственный университет О.

Методические указания по математическому. Примерная основная образовательная программа высшего профессионального образования по направлению "Прикладная математика" Направление подготовки - Прикладная математика Квалификация выпускника -. А69 Отображения окружности, векторные поля и их применения. Начинать показ со страницы:. Несобственные интегралы 5. Вычисление площадей 6. Вычисление длин дуг 7.

Вычисление объемов 8. Вычисление площадей поверхностей вращения 9. Координаты центра тяжести Задачи из механики и физики Приближенное вычисление определенных интегралов Отдел V. Признаки сходимости знакопостоянных рядов 2. Признаки сходимости знакопеременных рядов 3. Действия над рядами 4. Функциональные ряды 5. Степенные ряды 6. Ряды Фурье 7. Суммирование рядов 8. Нахождение определенных интегралов с помощью рядов 9.

Бесконечные произведения Дифференциал функции 3. Дифференцирование неявных функций 4. Замена переменных 5. Геометрические приложения 6. Формула Тейлора 7. Экстремум функции нескольких переменных Отдел VII. Интегралы, зависящие от параметра 1. Собственные интегралы, зависящие от параметра 2. Несобственные интегралы, зависящие от параметра. Эйлеровы интегралы 5. Кратные и криволинейные интегралы 1. Двойные интегралы 2. Вычисление площадей 3. Вычисление объемов 4.

Вычисление площадей поверхностей 5. Приложения двойных интегралов к механике 6. Тройные интегралы 7. Вычисление объемов с помощью тройных интегралов 8. Приложения тройных интегралов к механике 9. Несобственные двойные и тройные интегралы Многократные интегралы Криволинейные интегралы Формула Грина Физические приложения криволинейных интегралов Поверхностные интегралы Формула Остроградского Элементы теории поля Ответы Размышления о первой философии 1 и 2.

О природе человеческого ума о том, что ум легче познать, нежели тело. Дифференциальное исчисление функций одной переменной. Производная функции, заданной в неявном виде. Наибольшее и наименьшее значения функции.