Жолио-Кюри М. Шаскольская

У нас вы можете скачать книгу Жолио-Кюри М. Шаскольская в fb2, txt, PDF, EPUB, doc, rtf, jar, djvu, lrf!

А Фредерик, получив степень лиценциата равносильную степени магистра наук , продолжил свою работу и в году был удостоен докторского звания за исследование электрохимических свойств радиоактивного элемента полония. Попытки найти академическую должность не увенчались успехом, и молодой учёный уже совсем было решил вернуться к работе химика-практика на промышленном производстве, но Жан Перрен помог ему выиграть правительственную стипендию, позволившую Жолио-Кюри остаться в институте и продолжать исследования, связанные с воздействием радиации.

В году немецкий физик Вальтер Боте обнаружил, что некоторые лёгкие элементы, в частности бериллий и бор , испускают сильную проникающую радиацию при бомбардировке их движущимися с высокой скоростью ядрами гелия позднее это было названо облучением альфа-радиацией , образующимися при распаде радиоактивного полония. Знание инженерного дела помогло Жолио-Кюри сконструировать чувствительный детектор с конденсационной камерой, с тем чтобы фиксировать эту проникающую радиацию, и приготовить образец с необычайно высокой концентрацией полония.

С помощью этого аппарата супруги Жолио-Кюри как они себя называли , начавшие своё сотрудничество в году, обнаружили, что тонкая пластинка водородсодержащего вещества, расположенная между облучённым бериллием или бором и детектором, увеличивает первоначальную радиацию почти вдвое.

Дополнительные опыты показали им, что это добавочное излучение состоит из атомов водорода, которые в результате столкновения с проникающей радиацией высвобождаются, приобретая чрезвычайно высокую скорость.

Побочными продуктами при бомбардировке бора или алюминия альфа-частицами являются также позитроны положительно заряженные электроны , которые в том же году были обнаружены американским физиком Карлом Д. Закрыв отверстие конденсационной камеры тонкой пластинкой алюминиевой фольги, они облучали образцы бора и алюминия альфа-радиацией. Как они и ожидали, позитроны действительно испускались, но, к их удивлению, эмиссия позитронов продолжалась в течение нескольких минут и после того, как убирали полониевый источник.

Таким образом, Жолио-Кюри обнаружили, что некоторые из подвергаемых анализу образцов алюминия и бора превратились в новые химические элементы. Более того, эти новые элементы были радиоактивными: Поскольку эти неустойчивые радиоактивные элементы не были похожи ни на один из естественно образующихся радиоактивных элементов, ясно было, что они созданы искусственным путём.

Впоследствии супруги Жолио-Кюри синтезировали большое число новых радиоактивных элементов. Пальмайер, представляя их от имени Шведской королевской академии наук , сказал: В году Фредерик Жолио-Кюри, продолжая работать в Институте радия, одновременно занял и должность профессора в Коллеж де франс в Париже. Здесь он создал исследовательский центр ядерной физики и химии и основал новую лабораторию, где отделы физики, химии и биологии могли работать в тесном сотрудничестве.

Кроме того, учёный контролировал строительство одного из первых во Франции циклотронов , в котором при проведении исследований в качестве источника альфа-частиц должны были использоваться радиоактивные элементы. В году, вслед за открытием немецким химиком Отто Ганом возможности деления расщепления атома урана , Жолио-Кюри нашёл прямое физическое доказательство того, что такое деление носит взрывной характер. Признавая, что огромное количество энергии, высвобождаемой в процессе расщепления атома, может быть использовано в качестве источника энергии, он приобрёл у Норвегии практически всё имевшееся тогда количество тяжёлой воды.

Однако разразившаяся в это время Вторая мировая война и оккупация Франции германскими армиями заставили его прервать исследования. Подвергая себя значительному риску, Жолио-Кюри сумел тайно переправить имевшуюся в его распоряжении тяжёлую воду в Англию , где она была использована английскими учёными в ходе предпринимавшихся ими усилий по разработке атомного оружия. Оставаясь в Париже в период оккупации, Жолио-Кюри, несмотря на свои антифашистские взгляды и членство в Французской социалистической партии с года , сохранил за собой посты в Институте радия и в Коллеж де Франс.

Подобно своему учителю Ланжевену, в самый разгар войны в году он становится членом Французской коммунистической партии незадолго до своей смерти, в году, он будет избран членом ЦК ФКП. После освобождения Парижа Фредерик Жолио-Кюри был назначен директором Национального центра научных исследований, на него была возложена ответственность за восстановление научного потенциала страны. В октябре года он убедил президента Шарля де Голля создать Комиссариат по атомной энергии Франции.

Три года спустя он руководил пуском первого во Франции ядерного реактора. Несмотря на то что авторитет Жолио-Кюри как учёного и администратора был чрезвычайно высок, его связь с Французской коммунистической партией , в которую он вступил в году, вызывала недовольство и в году он был освобождён с поста руководителя Комиссариата по атомной энергии.

Оставаясь активным политическим деятелем, он был также президентом Всемирного Совета Мира. Смерть Ирен Жолио-Кюри в году явилась для её мужа тяжёлым ударом. Став её преемником на посту директора Института радия и заменив её на преподавательской работе в Сорбонне , он взял на себя также контроль над строительством нового института в Орсей , к югу от Парижа. Однако организм учёного был ослаблен из-за перенесённого двумя годами ранее вирусного гепатита , и 14 августа года Фредерик Жолио-Кюри скончался в Париже после операции, связанной с внутренним кровоизлиянием.

Фредерика Жолио-Кюри характеризовали как человека чуткого, доброго и терпеливого. Он любил играть на пианино, рисовать пейзажи и читать. А радий остается как будто бы неизменным. Препараты радия светятся в темноте так, что можно даже читать книгу, освещая ее этим голубоватым мерцанием радиоактивного препарата.

Это особенно нравится Пьеру Кюри. Он демонстрирует на лекциях светящиеся пробирки с крупицей радиоактивного вещества, любит показывать их знакомым. С детской радостью он говорит при этом: Любой предмет, побывший рядом с радиоактивным препаратом, сам становится радиоактивным и начинает испускать излучение, действующее сквозь черную бумагу на фотографическую пластинку.

Пыль, воздух в комнате, одежда, все приборы делаются радиоактивными. В наши дни, спустя шестьдесят лет после открытия радия, рабочие записные книжки Пьера и Марии Кюри продолжают испускать радиоактивное излучение. Пьер и Мария Кюри тогда еще не знали, какую страшную опасность для людей таит в себе излучение радия. Но они обнаружили, что радий даже через стеклянные стенки пробирок и через металлические футляры обжигает кожу, оставляет раны.

Руки у них обоих были всегда воспалены, кожа шелушилась и сходила, концы пальцев затвердели и мучительно болели.

Не колеблясь, Пьер Кюри испытал на себе это поразительное свойство радия, подвергнув руку действию его лучей в течение нескольких часов. С бесстрастием и точностью ученого он описал, как возник ожог, как разрасталась рана и как она постепенно, болезненно заживала несколько месяцев. Убедившись таким образом в физиологическом действии радия, он затем вместе с врачами начал опыты по лечению радием сначала на животных, а затем на человеке. Оказалось, что радий не только вызывает ожоги здоровых тканей, но и быстро разрушает больные клетки, злокачественные опухоли, что радием можно лечить такие страшные болезни, как волчанку, рак.

Уже в году этот вид лечения — впоследствии его назвали кюритерапией — начали применять в больницах, сперва во Франции, а затем и в других странах. Научные открытия следовали одно за другим с поразительной быстротой. Теперь уже Мария и Пьер не были одиноки. К ним присоединились молодые сотрудники, работавшие также добровольно и бескорыстно: Уже в году в нескольких странах одновременно началась промышленная добыча радия.

Пьер и Мария Кюри могли бы взять патент на открытый ими способ производства радия. Они стали бы миллионерами.

Так поступают в мире капитала. Но не так поступили супруги Кюри, несмотря на душившую их бедность, несмотря на то, что им приходилось перегружать себя тяжелой работой ради заработка, несмотря даже на отсутствие лаборатории и средств на научную работу.

Это противоречило бы духу науки, решили они. Ученый не должен, не имеет права извлекать для себя выгоду из своих открытий. Кроме того, ведь радий будет служить лечению больных, и это тоже должно быть доступно всем. И они полностью обнародовали результаты своих исследований, а также разработанный ими способ получения радия. Они давали указания и советы всем интересующимся. В конце концов слава пришла к Пьеру и Марии Кюри.

Научные общества и академии наук разных стран выбирают их своими членами, награждают медалями за замечательные открытия. Французское правительство решило наградить Пьера Кюри орденом Почетного легиона — высшей почестью во Франции.

Но, узнав об этом, Пьер ответил: А лаборатории все не было, и по-прежнему работа продолжалась в дощатом сарае с протекающей крышей. В году супругам Кюри и Анри Беккерелю за открытия в области радиоактивности была присуждена Нобелевская премия по физике. Какое первое употребление сделали Кюри из полученных денег?

Они наняли за свой счет препаратора для работ по радиоактивности. Их материальное положение немного улучшилось, они смогли отказаться от поисков дополнительных заработков, но лаборатории все еще не было. Только в конце года Парижский университет выделил для работ Пьера Кюри лабораторию со штатом из трех человек: Должность лаборанта была предоставлена Марии Кюри.

Только став всемирно прославленным ученым, лауреатом Нобелевской премии, она получила официальное право доступа в лабораторию. Беккерель и супруги Кюри намеревались раньше приехать в Стокгольм, но тяжелое недомогание Пьера, болезнь Марии и рождение младшей дочери Евы — все это задерживало их далекое путешествие. Международные Нобелевские премии по науке и искусству присуждаются Шведской Академией наук ежегодно, начиная с года. Фонд этих премий был учрежден инженером Нобелем, изобретателем динамита.

Нобелевского фонда, принимая награду, лауреат должен сделать доклад на торжественном заседании Шведской Академии наук. Оба докладчика говорили не только о себе, но и об открытиях физиков разных стран, об итогах многочисленных работ по радиоактивности во всем мире. Пьер Кюри, делая доклад от имени своего и жены, рассказывал и показывал. Все казалось простым и ясным в его изложении. Листки заряженного электроскопа, дрогнув, стали быстро спадать, лишь только Пьер Кюри поднес к электроскопу радиоактивный препарат: Пьер ставил различные преграды на пути лучей, но даже свинцовая пластинка не могла задержать всепроникающее излучение.

Беккерель и Кюри сообщили, что теперь известно уже три радиоактивных элемента: Все эти вещества и их соединения непрерывно, неизменно испускают излучение. Лучи радиоактивных веществ вызывают почернение фотографической пластинки, разряжают электроскоп и делают воздух проводником электричества, проходят через черную бумагу и через металл, действуют на живые ткани.

Лучи делятся на три категории, которые назвали альфа-, бета- и гамма-лучами. Их можно различать по тому, как ведут они себя в магнитном поле. Это установил англичанин Резерфорд в лаборатории Кавендиша в Кембридже.

Резерфорд достиг успеха лишь после того, как Мария Кюри послала ему препарат радия, в девятнадцать тысяч раз более активный, чем уран.

Конечно, Кюри не мог знать, что писал как раз в те дни Эрнст Резерфорд в письме к матери:. Останавливаться мне нельзя, потому что всегда есть люди, готовые меня обогнать. Мне приходится публиковать мои работы как можно скорее, чтобы не отстать в этом состязании. Альфа- и бета-лучи в магнитном поле отклоняются в разные стороны. Это потоки частиц с разными электрическими зарядами: Природа гамма-лучей тоже уже разгадана: Он повествует о самом поразительном: За час кусочек радия выделит количество тепла, более чем достаточное для того, чтобы растопить кусок льда равного веса.

Если хорошо защитить радий от потери тепла, он нагревается и его температура может подняться на десять и больше градусов выше температуры окружающей среды. А сам радий при этом как будто и не меняется. Не нарушен ли незыблемый закон природы, закон сохранения энергии? Неужто радий — вечный, неисчерпаемый источник энергии? Пьер Кюри рассказывает об изумительном открытии кембриджских физиков Рамзая и Содди. В запаянной ампуле, в которую эти два англичанина поместили радий, через некоторое время появились новые вещества: Не было там раньше этих веществ, они возникли при распаде радия.

Ведь до тех пор, со времен Лавуазье и Дальтона, ученые были убеждены, что химические элементы вечны, неизменны, не исчезают, не рождаются и не могут переходить друг в друга. Каждый элемент занимает свое место в периодической системе элементов — таблице Менделеева. Химические элементы располагаются в этой системе строго по своим местам, и казалось бесспорным, что нет причины, которая могла бы заставить какой-либо химический элемент превратиться в другой элемент, иначе говоря, перейти в другую клетку таблицы Менделеева.

И вот оказалось, что представление о неизменности химических элементов неверно. Атомы одних химических веществ в результате радиоактивного распада превращаются в атомы других веществ. Это было революцией в науке, требовало полной смены представлений о строении вещества.

Поразительно, сколько сделано за эти шесть-семь лет, какой поток открытий, гипотез, теорий последовал за первыми работами супругов Кюри в их сарае! Всего лишь семь лет тому назад открыт радий, но вот уже теперь Пьер Кюри может рассказать о смелой теории радиоактивных превращений, предложенной Резерфордом и Содди.

Эти два англичанина полагают, что атомы радиоактивных веществ непрерывно и необратимо распадаются, превращаясь в атомы других элементов. Именно при распаде атомов выделяется альфа-, бета- и гамма-излучение. Высокий, худой, седеющий человек с усталым лицом подводит итоги тому, что сделано:. Радиоактивные тела претерпевают эволюцию, медленно и постепенно видоизменяясь. Выделяемое тепло — это энергия, связанная с преобразованием столь малого количества радия, что даже через несколько лет потерю еще нельзя определить.

Это заставляет предположить, что здесь идет речь о существовании самого атома и что мы имеем здесь дело с превращением элементов. Тревога звучит в голосе Пьера Кюри. Он на минуту останавливается. Перед его глазами проходит в который раз! Смелые поиски, дерзкие искания, страстные надежды… Сотни жизней, отданных борьбе за знания, за овладение тайнами природы…. Тысячелетия, протекшие от первых, самых наивных представлений об атомах до гениальной системы элементов русского ученого Дмитрия Ивановича Менделеева; открытия новых элементов, предсказанные Менделеевым; удивительные находки последних лет, загадка радия, тяжелейший, изнурительный труд самих Пьера и Марии Кюри, грандиозный поток открытий из лабораторий разных стран.

Мечта человека об овладении силами природы. И вот теперь ученые дают людям в руки небывало мощный, вечный источник энергии, который освободит миллионы рабочих рук, сделает жизнь человека легкой и радостной. Радий таит в себе грозную опасность. О ней предупреждает Пьер Кюри:. В этом отношении очень характерен пример с открытиями Нобеля: Но они же оказываются страшным орудием разрушения в руках преступных властителей, которые вовлекают народы в войны. Пьер Кюри верит людям, он убежден в могуществе науки, и поэтому свой доклад он заканчивает словами:.

Радий был открыт в трудных условиях работы. Вокруг сарая, в котором это открытие было сделано, создавалась красивая легенда. При хороших условиях они добились бы тех же результатов не за пять, а за два года и не так бы переутомились. Получив кафедру и лабораторию в Сорбонне, Пьер Кюри расстался со Школой физики и химии, передав свою должность любимому ученику Полю Ланжевену.

Кафедру, принятую от своего учителя, Ланжевен возглавлял затем бессменно в течение тридцати четырех лет. В качестве профессора Сорбонны Пьер начал читать курс лекций по радиоактивности. Подготовка курса, строительство и организация новой лаборатории, руководство учениками поглощали его силы и время. Не взяв патентов на свои открытия и опубликовав во всех подробностях технологию переработки радиоактивных руд и добычи радия, супруги Кюри к тому же охотно давали консультации, считая своим долгом отвечать на каждое письмо, каждый запрос, касающийся производства радия во Франции и за границей.

Репортеры, фотографы, коллекционеры автографов, всевозможные попрошайки и зеваки преследовали ученых, не давая им ни минуты покоя. Парижские кабаре ставили скетчи из жизни супругов Кюри, репортеры описывали детский лепет их маленькой дочки Ирен, некий экстравагантный американец одолевал их письмами с просьбой разрешить назвать его скаковую лошадь именем Марии Кюри.

Рекламная шумиха утомляла и раздражала супругов Кюри, внушала им отвращение. Тяжелая болезнь изнуряла Пьера Кюри. Но, превозмогая ее, он делил свое время между лекциями в Сорбонне и новой лабораторией, которая строилась для него на улице Кювье и в которой — теперь ведь уже официально — трудилась и его жена. В лаборатории работали также их ближайшие сотрудники — химик Андре Дебьерн, физик Альбер Лаборд и несколько учеников.

Вместе с Лабордом Пьер Кюри исследовал радиоактивность минеральных вод и газов, выделяемых источниками. Мария Кюри продолжала работы по уточнению атомного веса радия. В холодный, дождливый день 19 апреля года Пьер Кюри поскользнулся, переходя через улицу, и был раздавлен насмерть тяжелым фургоном ломовика. Он умер в расцвете сил, не достигнув еще сорока семи лет. Кто заменит профессора Пьера Кюри на кафедре Парижского университета? Кто возглавит его лабораторию и продолжит его работу?

Никогда еще женщина не вступала на кафедру Парижского университета. Однако было настолько очевидно, что никто, кроме вдовы Пьера Кюри, не может продолжить их общую работу, что французский парламент вынес специальное постановление, разрешавшее нарушить традицию. Впервые в истории Франции женщина назначается преподавателем высшей школы — Мария Кюри возглавила кафедру и лабораторию, так внезапно покинутые Пьером Кюри. Она вернулась в лабораторию через три дня после смерти Пьера Кюри, чтобы окончить прерванный опыт, для которого несколько измерений они успели сделать вместе.

Тяжелые задачи легли на плечи вдовы Пьера Кюри. Не сгибаясь, она все приняла на себя: Она читала первый и в то время единственный в мире курс радиоактивности.

В рецензии на эту книгу создатель теории радиоактивного распада Резерфорд писал: В письме к матери в октябре года тот же Резерфорд писал: Она выглядит очень изнуренной и усталой, гораздо старше своих лет. Конгресс, о котором пишет Резерфорд, был первым из знаменитых международных физических конгрессов, носивших имя Сольвеевских, в честь бельгийского мецената Сольвея, пожертвовавшего деньги на их организацию.

Каждый из Сольвеевских конгрессов посвящался какой-либо одной, особо актуальной проблеме физики. На конгрессы съезжался избранный круг самых выдающихся физиков разных стран: На Сольвеевском конгрессе года обсуждался важный вопрос о мерах и стандартах для измерения радиоактивности. Заслуги супругов Кюри получили всеобщее признание: Далее конгресс принял еще одно важное решение: Решение конгресса было не только данью почета — нет, это было также признанием того, что никто не может превзойти точности измерений Марии Кюри.

Мария Кюри была первой женщиной — лауреатом Нобелевской премии и единственным ученым, получившим эту премию дважды. В году в том самом зале, где в июне года, принимая Нобелевскую премию, Пьер Кюри с тревогой и надеждой говорил о будущем науки, Марии Кюри была вручена Нобелевская премия по химии за блестящие работы, выполненные ею после смерти мужа.

Пьеру Кюри наука обязана целым рядом основополагающих работ в области радиоактивности, сделанных им самим, или же сообща со мной, или же в сотрудничестве со своими учениками. Химическая работа, имевшая целью выделить радий в виде чистой соли и характеризовать его как элемент, была сделана мной, но тесно связана с нашим совместным творчеством. Делом жизни Марии Кюри был Институт радия в Париже. Еще при жизни Пьера они вместе добивались создания надлежащей радиевой лаборатории. Но лишь через три года после его трагической гибели, в году, Парижский университет и Пастеровский институт приняли совместное решение о создании Института радия.

Институт должен состоять из лаборатории Кюри для физических и химических исследований радиоактивности и лаборатории Пастера для исследований медицинских и биологических. Первую лабораторию возглавит мадам Кюри, вторую — крупный ученый-медик, специалист по радиотерапии Клод Рего.

Началась постройка специального здания Института радия. Строительство длилось более трех лет. Мария Кюри входила во все мелочи, спорила с архитекторами, придирчиво проверяла ход их работы, сама сажала деревья и цветы.

Комнаты должны быть светлыми, веселыми; надо, чтобы здесь было приятно работать, требовала она. Стены Института радия росли, были подведены под крышу. Мария Кюри и ее сотрудники начали понемногу переносить приборы в новые помещения будущей лаборатории Кюри, покидая тесные комнатки на улице Кювье. Веселый гул наполнил новые лаборатории, и мадам Кюри, оживленная, помолодевшая, следила за установкой приборов, давала советы и указания, приступала к продолжению измерений и наблюдений.

В широко раскрытые окна нового Института радия щедро лились лучи июльского солнца. Еще никогда не было такой пустоты и одиночества вокруг мадам Кюри. Одна она старалась закончить перевозку и установку оборудования, брошенного в беспорядке. Ей помогал только служитель, не взятый в армию из-за больного сердца. А через несколько дней в покинутой лаборатории появилась помощница. Шестнадцатилетняя девочка, еще не кончившая школу, переносила и перевозила приборы, устанавливала их на новом месте, разбирала картотеки и коллекции минералов.

Она работала точно и быстро, как будто давно привыкла к лаборатории. И, глядя на ее уверенные движения, Мария Кюри как-то неожиданно для себя поняла: Ирен родилась 12 сентября года.

Несколькими месяцами позже ее родители сообщили во Французской Академии наук о сделанном ими открытии радия. Ей было восемь лет, когда погиб отец. Ее воспитателями были мать и дед. Отец Пьера Кюри врач Эжен Кюри был человек выдающихся способностей и редкой душевной чистоты. Он и сам был ранен во время революционных боев. Позже, во время холерной эпидемии, он остался как единственный врач в одном из кварталов Парижа, из которого бежали все другие врачи, и самоотверженно ухаживал за больными, пока не кончилась эпидемия.

Доктор Эжен Кюри смолоду мечтал о научной деятельности, но забота о семье, отсутствие средств вынудили его остаться практикующим врачом. Он на всю жизнь сохранил любовь к науке.

Этот высокий голубоглазый старик, широко образованный и остроумный, атеист, антиклерикал и республиканец, стал заботливым и нежным наставником для осиротевшей Ирен. Внучка была похожа на отца — медлительная, нелюдимая, замкнутая. Дед был товарищем ее детских игр и первым учителем. Он воспитывал в ней духовную уравновешенность и оптимизм, непререкаемую любовь к реальности, учил ее любить природу и вместе с ней восхищался Гюго и Киплингом.

Мужественный старик поддерживал бодрость и в Марии Кюри, не допускал, чтобы уныние и тоска овладевали ею и омрачили детство внучек. Мать тоже умно и внимательно руководила воспитанием дочерей, развивала я направляла в девочках стремление к знанию, любовь к труду.

Вместе с дочерьми Мария Кюри предпринимала дальние экскурсии на велосипеде, учила их плавать, грести, ездить верхом, ходить на лыжах, брала с собой в походы по горам, поощряла в них смелость и решительность. Мария Кюри хотела дать дочерям наилучшее образование, по казенная школа претила ей. Она хотела избавить Ирен от муштры и зубрежки, от бесплодных часов сидения в душном классе.

Ей хотелось, чтобы Ирен с детства училась мыслить, трудиться и чувствовать живое дыхание науки. Любящая мать и тут проявила свой талант организатора. Вместе с несколькими ближайшими друзьями она организовала школу для десятка детей, ровесников Ирен.

Учителями стали сами родители, и, наверно, никогда и нигде еще не было школы с таким блестящим преподавательским составом. Математику преподавал Поль Ланжевен, химией дети занимались в лаборатории Сорбонны под руководством знаменитого химика Жана Перрена, физике учила сама мадам Кюри в своей лаборатории. Такие же первоклассные учителя преподавали литературу, историю, иностранные языки, естествознание, рисование, лепку, шитье и даже огородничество. На живых и увлекательных уроках физики в лаборатории Кюри дети сами делали приборы и проверяли физические законы.

Мария передавала своим питомцам любовь к науке и целеустремленность. Она требовала от детей безупречной точности в устных арифметических подсчетах. Горе было тому из ребятишек, на чьем рабочем столе наставница замечала беспорядок. Она краснела от гнева: Дети наперебой предлагали сложные научные решения конструкции теплоизоляционной оболочки. Внимательно выслушав их, Мария улыбается: После двух лет этой идеальной школы Ирен поступила в коллеж. Она заканчивала среднее образование, когда разразилась война.

С детства Ирен не помышляла ни о каком ином призвании, как о работе под руководством матери в ее лаборатории. Ей не надо было ничего решать, она пришла в лабораторию Института радия, как в свой родной дом. И так же естественно, вслед за матерью, она пошла на фронт. Как найти свое место, что делать в дни войны?

Можно было бы продолжать научную работу в новой лаборатории — ведь Мария Кюри отлично умела работать и без помощников! Можно было бы уйти на фронт медицинской сестрой, как сделали многие ее друзья. Но этого было недостаточно для такого большого человека, как мадам Кюри, и она отдала служению народу не только знания и энергию, но и громадный талант организатора. В первые месяцы войны она заметила, что в военно-медицинской службе нет рентгеновских аппаратов. Рентгеновы лучи известны были тогда всего лишь два десятка лет, но уже довольно широко применялись в гражданской медицине.

Где же и использовать рентгеновские аппараты, как не на фронте для помощи раненым? Мадам Кюри попробовала убедить высшую военную администрацию в необходимости организовать рентгеновское обслуживание на фронте.

В лучшем случае ее снисходительно выслушивали, не принимая решений. Тогда с той же неистощимой энергией, с какой она когда-то перерабатывала тонны руды, не имея в распоряжении никаких средств, она решила сама снарядить рентгеновские переносные аппараты для просвечивания раненых.

Старательно, терпеливо собирала она все рентгеновские аппараты, какие можно было найти в физических лабораториях и в городских больницах. На покупку аппаратов пошли и все ее личные средства, оставшиеся от Нобелевской премии. Старые, полуразбитые грузовики, изящные лимузины, туристские автомобили — все шло в ход. Автомашина переделывалась, на ней устанавливался переносный рентгеновский аппарат и динамо-машина, приводимая в действие автомобильным мотором.

Такой передвижной рентгеновский пункт объезжал госпитали, помогая врачам оперировать раненых на месте. Одну из таких походных лабораторий профессор Мария Кюри оставила для себя. В грязь и пыль, холод и в зной мчалась на грузовике по прифронтовым дорогам из госпиталя в госпиталь эта уже немолодая женщина. Она была и рентгенотехником, и лаборантом, и медицинской сестрой, и прежде всего организатором.

Она преодолевала трудности, чинимые военной администрацией. Она преодолевала недоверие врачей, обучала их, убеждала. Она преодолевала естественный страх раненых, мягко уговаривая их: В ту пору медицинская рентгенология была еще в зачатке. Мария Кюри сама разрабатывала новые методы изучения переломов, отыскания повреждений или застрявших осколков. Она пробивается через патрули, спорит с часовыми, объясняет и убеждает. Вот, наконец, машина прибыла к фронтовому госпиталю.

Быстро, точными, скупыми движениями, спокойно, как у себя в лаборатории, женщина распаковывает приборы, тянет провода, устанавливает аппарат, завешивает окна в домике или в палатке. Час-два — временный рентгеновский пункт готов. И вот уже несут носилки с изувеченными телами, ковыляют на костылях раненые.

На светящемся экране или на фотографической пластинке вырисовывается изображение: Негромко, уверенно Мария поясняет врачу, учит его и учится вместе с ним. Иногда тут же на месте хирург делает операцию. И всегда Мария успевает обучить кого-то рентгеновской технике, управлению аппаратом. Двое, трое суток почти без перерывов и без сна, пока есть пациенты. Затем, упаковав оборудование, она возвращается в Париж. Но это не все. Скоро она появляется снова. Откуда достала она еще один рентгеновский аппарат?

Она приехала, чтобы установить его в этом госпитале и проверить, как справится с ним обученный ею техник. Первым помощником и здесь стала Ирен. Она работала рентгенологом в походных лабораториях, в прифронтовых госпиталях, помогала оборудовать рентгеновские кабинеты, принимала раненых, учила врачей.

Нескончаемый поток измученных, страдающих, изувеченных людей проходил через рентгеновские пункты. В сердце девушки, едва достигшей семнадцати лет, росло гневное возмущение против преступников, затеявших мировую бойню. Чем больше рентгеновских аппаратов удавалось достать и снарядить для армии, тем острее ощущался недостаток квалифицированного персонала.

Тогда мадам Кюри организовала в своей лаборатории в Париже школу техников-рентгенологов. Лаборатория не может принять многих? Ну что ж, значит, будем пропускать их группами по пятнадцать человек. Она сама, Ирен, их ближайшие сотрудницы. Курсы подготовили сто пятьдесят квалифицированных рентгенологов. Ирен руководила практическими занятиями. Она закончила среднее образование и поступила в Сорбонну. Частые поездки отвлекали ее, но она не бросала занятий, сдавала экзамены.

В конце войны, когда понемногу затеплилась жизнь в Институте радия, Ирен была зачислена препаратором в лабораторию Кюри. Пушечный салют возвестил о заключении перемирия. Мадам Кюри смогла вернуться в свою лабораторию. Она не бросила военную медицину, а постепенно передала начатое дело биологическому отделению Института радия. Школа рентгенологов работала еще два года.

Снова ожили рабочие комнаты лаборатории Кюри. Вернулись старые работники — увы, не все! Многие погибли на фронте. Появляются новые сотрудники и ученики, возобновляются исследования, прерванные войной. Мария Кюри тщательно подбирала состав Института радия, сама руководила работой каждого из сотрудников. Число физиков и химиков возросло уже до четырех десятков.

Вместе с ней работали самые близкие помощники: Руководителем работ стал физик Жан Перрен. Живое участие в работе института принимал профессор Ланжевен. Появились ученики и из-за границы. Мария Кюри считала, что, принимая учеников из-за рубежа, она способствует подъему национального престижа Франции и развитию изучения радиоактивности во всем мире. Бывали времена, когда в лаборатории Кюри одновременно работали гости из шестнадцати разных стран, а всего через нее прошли представители двадцати пяти стран.

Были здесь и ученые из Советской России: В Институте радия создавалась и росла научная школа, оказавшая большое влияние на развитие науки.

Институт растет и ширится. Мария Кюри добивается новых кредитов, достает необходимые материалы, руководит работами, устанавливает научные связи с заграницей. Под руководством Марии Кюри Институт радия становится мировым центром по исследованию радиоактивности.

Вскоре после конца войны профессор Кюри возобновила чтение лекций в Сорбонне. Все с той же неутомимой энергией она заботилась о расширении преподавания учения о радиоактивности, об увеличении фонда стипендий для неимущих учащихся. Обязанности директора отнимают у Марии Кюри много времени. Тем не менее она никогда не прекращает свою исследовательскую работу. Она никому не доверяет изготовление препаратов, сама производит измерения и вычисления, исписывая аккуратным почерком страницы лабораторного дневника.

В совершенстве владея пятью языками, она прекрасно знает литературу и требует того же от учеников. Еще во время строительства ее первой заботой было насадить деревья вокруг здания и на маленьком участке, отделяющем лабораторию Кюри от лаборатории Пастера.

Теперь в этом тенистом садике происходят все обсуждения, встречи и приемы. Мария Кюри выходит из своего кабинета и, опираясь на балюстраду террасы, принимает живое участие в разговоре. Защиту диссертаций — а из стен лаборатории Кюри выходят ежегодно десятки законченных диссертаций — празднуют обычно тоже в саду.

Под липами устанавливают тогда столы, сервированные химической посудой и фотографическими кюветами. А если погода не располагает к беседам под липами, то случайно возникшие обсуждения и жаркие споры нередко собирают сотрудников у самого выхода из института. Почему-то всем полюбился узкий проход внизу, у лестницы. И часто бывает, что сама мадам Кюри, уютно присев на ступеньках, азартно вступает в спор, а молодежь располагается вокруг, кто на ступеньках, кто на перилах, кто стоя.

Есть о чем поспорить! Наука о радиоактивности переживала в это время новый подъем после застоя военных лет. В эпоху открытия радия, на рубеже двух веков и в первые годы XX века, представления об атомах были еще очень смутными. Именно исследование радиоактивного распада в основном дало ключ к разгадке строения атома. К моменту начала первой мировой войны в итоге большой работы ученых Франции, Англии и других стран вырисовалась подтверждаемая опытом теория: Заряд ядра равен атомному номеру в таблице Менделеева.

Кюри наметили, Резерфорд и другие продолжили и доказали: Самопроизвольно, без каких бы то ни было внешних причин ядро взрывается, из него вылетает альфа-частица ядро атома гелия или бета-частица электрон , и одновременно излучаются электромагнитные волны — гамма-лучи.

Меняется заряд ядра — возникает новый химический элемент. Почему распадается именно этот, а не другой атом? Это неизвестно и поныне. В первое десятилетие XX века было открыто и изучено много реакций естественного радиоактивного распада.

Оказалось, что естественная радиоактивность — свойство всех атомов, находящихся в конце таблицы Менделеева: Постепенно начали привыкать к новым представлениям о строении вещества: Они могут меняться, вызывая превращения элементов.

Это была революция в науке, а первое десятилетие XX века было периодом ее закрепления и становления. Все более ясной становилась новая идея: А может быть, в ядре есть и какие-либо еще частицы? Чтобы решить это, надо проникнуть внутрь атомного ядра. Конечно, наибольшее внимание привлекала основная особенность радиоактивного распада: Энергия выделяется при каждом распаде ядра.

Нельзя ли ее использовать? Прежде всего выяснилось, что нет никакой возможности ускорить или замедлить процесс естественного радиоактивного распада. Нет никакой возможности предсказать, распадется или не распадется данный атом. Уже Пьер Кюри указал, что энергия, выделяющаяся при радиоактивном распаде, огромна. Один, только один грамм урана, распадаясь, даст столько же энергии, сколько можно получить, сжигая в топках котлов три тонны угля.

Заманчиво использовать эту энергию! Но… Если у вас есть грамм урана, вам придется подождать полторы тысячи лет, пока распадется половина грамма. В следующие полторы тысячи лет распадется половина оставшейся половины, и так далее.

Этот закон радиоактивного распада установили все те же английские ученые: Они доказали, что каждое радиоактивное вещество характеризуется периодом полураспада. Нельзя угадать, который атом распадется раньше или позже, но можно точно определить, что за время, равное периоду полураспада, распадется половина наличного количества атомов. Времена эти очень разнообразны: Если бы грамм радия распался целиком, выделилось бы около 2 тысяч миллионов калорий, в тысяч раз больше, чем дало бы сгорание грамма угля.

Но пройдет история человечества, от падения Римской империи до наших дней, пока грамм радия распадется наполовину! Можно ли пользоваться таким источником энергии? Как же все-таки овладеть энергией атомного ядра? Очевидно, надо не ждать, пока ядро распадется само, а научиться его разбивать.

Ведь все попытки вмешаться в процесс радиоактивного распада неизменно кончались неудачей. Мысль о проникновении внутрь атомного ядра казалась смелой фантастикой. Первобытный дикарь научился готовить пищу на костре, но мог ли он мыслить о будущем огня — о топках паровых машин, о паровозах и пароходах?!

Он видел только естественное проявление огня, то есть пламя. Энергия, нужная нам для самого нашего существования, которой природа снабжает нас лишь неохотно и совсем не щедро по сравнению с нашими нуждами, действительно содержится в виде громадных запасов в окружающей нас материи, но управление ею и использование ее еще не в наших руках.

Резерфорду впервые удалось искусственно разбить атомное ядро. В качестве снарядов Резерфорд применил альфа-частицы. Представьте себе стрелка, стоящего очень далеко от мишени размером в сто гектаров один квадратный километр. На мишени нарисована цель: Именно так относятся друг к другу размеры атома и атомного ядра: Каково стрелять в такую цель даже и самому искусному стрелку? Но задача Резерфорда была еще сложнее: Ведь атомы и их ядра невидимы.

Резерфорду удалось поставить опыт так, что альфа-частицы попадали в ядро атома азота и разбивали его. При этом из ядра азота вылетали протоны, и азот превращался в кислород. Это была первая искусственная реакция превращения элементов, осуществленная человеком. От слепого стрелка Резерфорд отличался тем, что на его мишени была не единственная цель: К тому же у Резерфорда был не один снаряд, он бомбардировал азот громадным количеством альфа-частиц.

В ядро азота попадали очень немногие частицы: Англичанин Блеккет, который вслед за Резерфордом занимался бомбардировкой атомных ядер, снял и изучил двадцать три тысячи фотографий.

На них были видны пятьсот тысяч следов альфа-частиц, но лишь в восьми случаях Блеккет обнаружил то, что искал: Кстати, увидеть и сфотографировать следы альфа-частиц Блеккет смог лишь потому, что к этому времени англичанин Вильсон изобрел прибор, названный камерой Вильсона.

Камера Вильсона заполнена пересыщенным паром. Когда сквозь пар пролетает заряженная частичка, след ее вырисовывается как темная черточка на ровном сером фоне. Решил ли Резерфорд задачу овладения ядерной энергией? Нет, до этого решения было далеко. Да, действительно, при каждом распаде атомного ядра, когда в него попадала альфа-частица, выделялась громадная энергия. Например, каждый раз, когда альфа-частица попадает в ядро атома алюминия, выделяется энергия в 3,3 миллиона электроновольт.

Но ведь попадают очень редкие альфа-частицы, а все остальные летят вхолостую. А на то, чтобы направить пучок альфа-частиц на ядра, нужно затрачивать энергию.

Если подсчитать, то оказывается: Ясно, что тратится несравненно больше энергии, чем получается. Опыты Резерфорда не сделали рентабельным источник ядерной энергии. Но они показали, что человек может извлечь ядерную энергию. Пусть пока этот процесс оставался явно невыгодным. Сокровищница природы еще хранила свое богатство, но ключ был уже в руках человека. Успех Резерфорда в штурме ядра азота и искусственном превращении азота в кислород был сенсацией, вестью о начале новой эпохи в истории наук: Это сообщение появилось в то время, когда в лабораториях только что снова затеплилась жизнь, прерванная войной.

Многие лаборатории, и прежде всего лаборатория Кюри в Париже, подхватили и продолжили работы Резерфорда. Вскоре удалось наблюдать расщепление ядер не только у азота, но и у бора, фтора, натрия, алюминия, фосфора.

За ними последовало расщепление ядер неона, магния, кремния, серы, хлора, аргона, калия. Стало ясно, что человек может искусственно вызвать превращение элементов, бомбардируя атомное ядро надлежащими снарядами. Но вот тут-то и таилась основная трудность: Альфа-частицы, то есть ядра атомов гелия, несут на себе положительный электрический заряд.

Ядро любого атома тоже заряжено положительно. А так как электрические заряды одного знака отталкиваются, то мишень, то есть ядро бомбардируемого атома, и снаряд, то есть альфа-частица, отталкиваются друг от друга. Заставить альфа-частицу преодолеть эти силы отталкивания удавалось лишь для легких атомов. Поэтому и оказывалось возможным разрушать лишь ядра легких элементов.

Последним из них стал калий. Все попытки разрушить ядра элементов, следующих за калием, не привели к успеху. Для штурма атомного ядра нужны были снаряды более мощные, чем альфа-частицы. Но в те времена физики еще не знали других частиц.

Не удивительно, что десятилетие, прошедшее после работ Резерфорда, хотя и было заполнено интенсивной работой, но не принесло новых решающих открытий в области превращения элементов. Это был период, когда углублялись и накапливались знания о строении атома и атомного ядра, совершенствовалась техника эксперимента. Именно в эту пору начал Фредерик Жолио работать в Институте радия, под непосредственным руководством Марии Кюри. Фредерику Жолио было уже 25 лет, но прежде всего ему пришлось выполнять требование Ланжевена, повторенное мадам Кюри: Это было трудно и скучно: Вчерашнему инженеру и офицеру, взрослому человеку было неловко сдавать экзамены вместе с мальчуганами.

Он одолел школьную премудрость, сдал экзамены, получил степень бакалавра и почти сразу, не давая себе передышки, сдал вторую серию экзаменов, приобретя и степень лиценциата.

Он не думал о будущем, не спрашивал себя, что ждет его впереди. Перед ним была одна цель: Учиться, учиться, быть достойным такого исключительного руководителя, как Мария Кюри.

Она была требовательна, но новый лаборант успешно справлялся со всеми ее заданиями, поражая даже ее быстротой и инициативой. Сначала мадам Кюри поручила Фредерику некоторые исследования электрических свойств тонких слоев металлов. Фредерик сразу же показал себя искусным и изобретательным экспериментатором.

Он разработал новые способы приготовления тонких металлических пленок, сконструировал и собственноручно изготовил изящные установки. Меняя толщину пленок, температуру, содержание газов, он наблюдал, как сказывается это на электрических свойствах пленки. Не ограничиваясь чисто теоретическими результатами, Фредерик настойчиво думал об их практическом применении, изобретал и совершенствовал. В своих статьях — а они начали появляться в печати уже с года — он описал новый метод приготовления очень чувствительных электросопротивлений, приборов для измерения температуры и лучистой теплоты.

Маститый английский физик Томсон воспользовался его методом приготовления тонких пленок золота и в одной из своих статей выразил благодарность молодому лаборанту из Института радия. Одновременно Жолио разрабатывал новые методы электрохимического исследования радиоэлементов, нашел и проверил закон зависимости скорости выделения радиоактивного элемента из раствора.

Сконструированный им прибор позволял обнаруживать выделение радиоактивного вещества даже в таких ничтожных количествах, как 0, грамма, причем эти количества точно измерялись, чего не удавалось достигнуть раньше. Ему пришлось много учиться, овладевая новой специальностью. Мария Кюри вдумчиво направляла его. Он работал непосредственно в ее лаборатории, рядом, а часто и вместе с Ирен Кюри. Сначала Ирен показалась ему холодной и замкнутой.

Высокая, быть может, немного слишком мужественная девушка, с уверенным взглядом, с высоким, выпуклым лбом, над которым слегка вьются светлые волосы.

Она задумчива, углублена в себя, молчалива, внешне неприветлива, всегда спокойна и невозмутима. Она безжалостно прямолинейна и правдива до резкости. Иные принимают ее сдержанность за высокомерность. Но ее кажущаяся холодность — это страстная внутренняя сосредоточенность. О радиоактивности Ирен знала гораздо больше, чем Фредерик. Нередко она давала ему разъяснения, поражавшие его своей четкостью.

Научные исследования Ирен делали ее достойной продолжательницей славной семейной традиции Кюри. У нее было уже несколько печатных работ. Как и мать, она делала всегда сама все препараты, никому не доверяла отсчеты по приборам. Ее научная работа отличалась глубиной подхода и точностью результатов. Она только что защитила диссертацию на тему о пробеге альфа-частиц полония. В ее диссертации был применен чрезвычайно изящный метод одновременного наблюдения очень большого числа альфа-частиц.

Ирен была уже опытным экспериментатором, и мать поручила ей ознакомить нового лаборанта с техникой измерений. В общей работе они узнали и оценили друг друга. Много лет спустя Фредерик Жолио вспоминал: Но я наблюдал за нею. Все началось с наблюдений. При ее внешней холодности, такой, что она иной раз забывала поздороваться, она не вызывала симпатий среди окружающих, в лаборатории. По характеру она во многом была живым воплощением своего отца.

Сначала Фредерику казалось, что Ирен — только исследователь, что она живет исключительно лабораторией. Но очень скоро он узнал, что Ирен — великолепный спортсмен, она прекрасный гребец, неутомимый ходок по горам, непревзойденная лыжница. Это еще сильнее подняло ее в глазах Фреда, по-прежнему увлекавшегося спортом.

Оказалось далее, что Ирен великолепно знает поэзию, не только французскую, но и немецкую, английскую, польскую. Она и сама пишет стихи, переводит на французский стихи Киплинга. Они были совсем разными по характеру — живой, увлекающийся, горячий, экспансивный Фредерик и спокойная, рассудительная, сдержанная Ирен. Но чем больше узнавали они друг друга, тем больше сближались.

Они работали в лаборатории вместе, и понемногу вошло в обычай, что после работы Фред провожал Ирен домой на Бетюнскую набережную, где она жила с матерью и сестрой. А затем последовали вылазки в лес, долгие прогулки в горы. Характеры у нас были разные, но как бы взаимно дополняющие. Ирен Кюри стала не только подругой жизни Фредерика Жолио, матерью его детей, но и верным товарищем в научной работе, а потом соратником в битве за мир. Совместная научная работа Ирен Кюри и Фредерика Жолио ведет свое начало с года.

И дальше, всю жизнь, они работали вместе, и в юности и позже, когда оба стали всемирно прославленными учеными, оба — руководителями больших институтов, оба — борцами за Науку, за Мир. Всего за свою жизнь Фредерик Жолио опубликовал около ста двадцати научных работ. Из них больше шестидесяти выполнены им вместе с женой. Первые годы их совместной жизни были безмятежно счастливыми и спокойными. В году у них родилась дочь Элен, в году — сын Пьер.

Не оставляя работы в Институте радия, он взялся за преподавание физики в частной школе. В году, после защиты докторской диссертации на тему об электрохимии полония , он был назначен научным сотрудником Национального фонда наук и получил возможность оставить школу, посвятив все свое время научным исследованиям, по-прежнему в лаборатории Кюри, неизменно вместе с Ирен. Первое время после женитьбы молодожены жили вместе с Марией Кюри, затем поселились отдельно, но бывали в доме на Бетюнской набережной почти ежедневно.

У них одни интересы, одна работа. Нередки и научные споры, когда Мария и Фредерик перебивают друг друга так быстро и напористо, что даже Ирен не успевает вставить слово.

Каждое лето они проводят вместе в приморской деревушке Ларкуэст в Бретани, излюбленном месте отдыха парижских профессоров. На каникулах здесь собирается избранное общество: Они такие же загорелые, так же одеты и так просто держатся, как и коренные жители Ларкуэста, бретонские моряки. Только научные споры, разгорающиеся подчас на пляже или на рыбачьей лодке, выдают парижских ученых. Здесь Фредерик всей душой отдается своей страсти: Живо жестикулируя и, правду сказать, разводя руками несколько шире, чем того требует истина, он рассказывает рыбакам, какую огромную щуку он поймал в Сене: Высушенные головы громадных рыб он хранит как трофеи в своем рабочем кабинете в Париже.

В бумажнике, как оказалось, бережно хранится фотография огромной щуки, поимкой которой так безумно гордится Фредерик Жолио. Фредерик и Ирен ловко управляют яхтой, уплывая далеко в море. А вечером при свете фонариков они отплясывают с рыбаками на деревенской площади и поют с ними народные песни. Старики, покуривая трубочки, степенно расспрашивают полюбившихся им гостей: Освеженные, веселые, возвращаются Жолио-Кюри осенью в Париж.

Свои совместные исследования по радиоактивности они начали с того, что изготовили сами, своими руками самый мощный по тому времени источник альфа-лучей: Извлечение чистого полония, очистка его, накопление были операциями очень сложными и опасными: Должно быть, именно тогда Фредерик и Ирен получили наибольшие дозы облучения.

Ирен к тому же, вероятно, получила громадную дозу облучения, еще когда она обслуживала примитивные рентгеновские аппараты во фронтовых госпиталях. Они были молоды, жизнерадостны и полны здоровья, но уже с тех пор радиоактивное излучение неумолимо совершало свое дело, разрушая их кровь. Ирен и Фредерик сами конструировали, сами выверяли свои приборы.

Фредерик и тогда и позже всегда настаивал на этом: Обладание мощным источником альфа-лучей дало супругам Жолио-Кюри большое преимущество перед другими. Они оказались в положении артиллеристов, имеющих орудия самого крупного калибра. Кроме того, Фредерик с его талантом инженера-конструктора значительно усовершенствовал камеру Вильсона, что дало ему возможность увеличить пути альфа-частиц, наблюдать распад отдельных атомов и открыть новые эффекты при бомбардировке легких элементов альфа-частицами.

В году супруги Жолио-Кюри занялись тем, что в ту пору называли бериллиевым излучением. Бериллий, когда его бомбардировали альфа-частицами, вел себя странно.

Ядра атомов бериллия распадались так, как это было и с другими легкими ядрами в опытах Резерфорда, но при этом распаде испускалось еще какое-то таинственное излучение, которое свободно проходило даже через толстый слой свинца.

Немецкие физики Боте и Беккер, впервые наблюдавшие это явление, решили, что это сильно проникающие, мощные электромагнитные волны, гамма-лучи. Но они пользовались своей усовершенствованной аппаратурой, что позволило им выявить основное свойство излучения Боте и Беккера.

С первого взгляда могло показаться, что опыт супругов Жолио-Кюри поставлен нелепо. Было уже известно, что излучение Боте и Беккера способно проходить через слой свинца толщиной в десяток сантиметров. А Жолио-Кюри закрыли окошко камеры не толстым свинцом, а тонким алюминиевым листком и поместили над ним легкий парафиновый экран.

Что они надеялись найти? Вот в этом и была особенность творчества Фредерика Жолио: Конечно, надо исходить из заранее обдуманной гипотезы, однако всякий раз, когда это возможно, опыт должен ставиться таким образом, чтобы открыть при этом как можно больше окон в сторону непредвиденного. Они пропустили излучение Боте-Беккера через вещества, содержащие водород парафиновый или целлофановый листок. Оказалось, что таинственные бериллиевые лучи действуют как снаряды: Через пять недель, 27 февраля года, пришло новое сообщение.

Чадвик в Англии, прочитав статью Жолио-Кюри, объяснил их результаты: Масса таких частиц должна быть близкой к массе протона, то есть ядра атома водорода. Это поток тяжелых, электрически нейтральных частиц.

Чадвик смог так легко и быстро объяснить результаты французских физиков потому, что он раньше уже искал нейтрон. Сами Жолио-Кюри писали об этом через два десятка лет:. Он высказал тогда предположение: Такую предполагаемую частицу он назвал нейтроном.

Однако большинство физиков, в том числе и мы, не обратили внимания на эту гипотезу. Но она все еще блуждала под сводами здания лаборатории Кавендиша, где работал Чадвик, и вполне естественно и справедливо, что последняя точка в открытии нейтрона была поставлена именно здесь. Постепенно эти идеи созревают: Нейтроны — это и были как раз те снаряды, которые так настоятельно требовались ядерной физике. У нейтрона нет электрического заряда, поэтому он может проникать в атомное ядро, не испытывая тех сил отталкивания, которые ослабляют положительно заряженную альфа-частицу.

А так как нейтрон — частица достаточно тяжелая, он энергично действует на атомное ядро, разбивая его. Отныне ядерная физика получила в свое распоряжение мощные снаряды, которыми можно разбивать и легкие и тяжелые ядра атомов.

Открытие нейтрона было сигналом к новому наступлению. В том же году была выдвинута новая теория строения атомного ядра: Число протонов — это число электрических зарядов ядра. Сумма масс протонов и нейтронов — это масса атомного ядра. В ядре водорода — 1 протон. В тяжелых ядрах больше нейтронов, чем протонов, например, у радия 88 протонов и нейтронов, а у обычного урана 92 протона и нейтронов.

Именно поэтому при распаде тяжелых ядер так легко образуются альфа-частицы. Если атомное ядро состоит из целого числа протонов и нейтронов, то атомный вес любого элемента должен быть всегда целым числом. За единицу атомного веса ученые принимают вес протона. Значит, например, атомный вес водорода должен быть равен единице 1 протон , гелия — четырем 2 протона, 2 нейтрона , хлора — тридцати пяти 17 протонов и 18 нейтронов , урана — двумстам тридцати восьми 92 протона, нейтронов.

Но посмотрите на таблицу Менделеева. У большинства элементов атомный вес не целое число, а целое число с дробью: